Procedure:

- 1. read STAWA procedure
- 2. Safety considerations include:
- use of Bunsen burner use safety flame when not in use
- hot objects crucible will be very hot from the bunsen burner
 - use metal tongs to move lid when required
 - let crucible and clay triangle cool down sufficiently before cleaning up
- BaCl₂ is poisonous do not let it touch your skin
 - use spatula to move it to the crucible
- wear safety glasses

Further notes at

https://docs.google.com/document/d/11rgNdhQiFNuZy60uDJgigB2TILz0zmf41db6Ro24QUs/edit

3. in video

Results and Observations:

Materials	Mass (g)
Crucible & Lid	19.888
Crucible, lid & hydrated barium chloride	22.269
hydrated barium chloride	22.269 - 19.888 = 2.381
crucible, lid & barium chloride	21.908
barium chloride	21.908 - 19.888 = 2.020

Processing of result and questions

Aa °= ⊞ © All iCloud 1. $n(BaCl_2) = \frac{M}{M} = \frac{2.020}{137.342k35.45} = 9.7022 \times 10^{-3}$ 2. $m(H_{20}) = 2.381 - 2.020 = 0.361q$ $n(H_{20}) = \frac{m}{M} = \frac{0.361}{2 \times 1.008 + 16.00} = 0.02004 \text{ mol}$ $3. \chi = \frac{0.02004}{9.7022 \times 10^{-3}} = 2.07 \approx 2$: Ball, 2 H20 4. / Bain = 137.3 x100 = 65.9/.
Bacl2 1373+2x35.45 $\frac{1}{180}$ Bain $\frac{137.3}{137.3}$ Ba α_2 . $\frac{1}{1}$ Ba α_2 Ba α_2 x 100 = 60.7%

POST Late Q 1. $m(Mq O_3) = 7.58 q$ $m(H_2O) = 15.67 - 7.58 q = 8.09q$ $M(H_2O) = 2 \times 1.008 + 16.00 = 18.016 q mol = 1$ 8.09q = 0.4490 mol 18.016 $n(Mg O_3) = \frac{7.58}{24.31 - 12.01 + 3 \times 16.00} = 0.08990$ $0.4990 mol H_2O : 0.08990 mol Mg O_3$ 5 : 1i, formula = Mg O_3 . 5 H₂O

 \bigcirc

Aa 🐫 🗎 🔯

2.
$$m(H_{20}) = 3.216 - 2.222 = 0.9949$$

 $n(H_{20}) = \frac{m}{M} = \frac{0.994}{18.016} = 0.05517 \text{ mol}$

$$n(Na) = \frac{m}{M} = \frac{0.5077}{72.99} = 0.02208 \text{ mal}$$

 $n(B) = \frac{m}{M} = \frac{0.4775}{10.81} = 0.04417 \text{ mol}$

$$n(8) = \frac{m}{M} = \frac{0.4775}{10.81} = 0.04417 \text{ mol}$$

$$M(0) = 2.222 - 0.5077 - 0.4775 = 1.23689$$

 $N(0) = \frac{m}{M} = \frac{1.2368}{16.00} = 0.0773 \text{ mol}$

$$x = 2, y = 4, 3 = 7, X = 5$$